From Maxwell's equations to the theory of current‐source density analysis

نویسندگان

  • Sergey L Gratiy
  • Geir Halnes
  • Daniel Denman
  • Michael J Hawrylycz
  • Christof Koch
  • Gaute T Einevoll
  • Costas A Anastassiou
چکیده

Despite the widespread use of current-source density (CSD) analysis of extracellular potential recordings in the brain, the physical mechanisms responsible for the generation of the signal are still debated. While the extracellular potential is thought to be exclusively generated by the transmembrane currents, recent studies suggest that extracellular diffusive, advective and displacement currents-traditionally neglected-may also contribute considerably toward extracellular potential recordings. Here, we first justify the application of the electro-quasistatic approximation of Maxwell's equations to describe the electromagnetic field of physiological origin. Subsequently, we perform spatial averaging of currents in neural tissue to arrive at the notion of the CSD and derive an equation relating it to the extracellular potential. We show that, in general, the extracellular potential is determined by the CSD of membrane currents as well as the gradients of the putative extracellular diffusion current. The diffusion current can contribute significantly to the extracellular potential at frequencies less than a few Hertz; in which case it must be subtracted to obtain correct CSD estimates. We also show that the advective and displacement currents in the extracellular space are negligible for physiological frequencies while, within cellular membrane, displacement current contributes toward the CSD as a capacitive current. Taken together, these findings elucidate the relationship between electric currents and the extracellular potential in brain tissue and form the necessary foundation for the analysis of extracellular recordings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

The modeling of induced current density in eyes from static magnetic fields produce by MR scanner

Introduction: Staff and patient Movement in static magnetic field MRI scanner induces current density in the human tissues, so cause biologic effects in people. The aim of this study was the Modelling of current density induced by moving individual with different velocities in static magnetic field of magnetic resonance imaging. Materials and Methods: current ...

متن کامل

Liquid Density Modeling of Pure Refrigerants Using Four Lattice-Hole Theory Based Equations of State

The present study investigates the performance and relative accuracy of four lattice-hole theory based equations of state in modeling and correlating the liquid density of pure refrigerants. Following the gathering of a database of 5740 experimental liquid density datapoints of 36 pure refrigerants belonging to five different categories including CFCs, HCFCs, PFCs, HFCs and HFEs, ranging from 6...

متن کامل

Density and Polarization Profiles of Dipolar Hard Ellipsoids Confined between Hard Walls: A Density Functional Theory Approach

The density and polarization profiles of the dipolar hard ellipsoids confined between hard walls are studied using the density functional theory (DFT). The Hyper-Netted Chain (HNC) approximation is used to write excess grand potential of the system with respect to the bulk value. The number density is expanded up to zero and first order in polarization to find the results. For the zero order in...

متن کامل

A Novel Method for Modeling and Simulation of Asymmetrical Impedance-source Converters

Z-Source converter or impedance-source converter is a kind of power converters, which has the responsibility to convert the direct current to alternative current. This converter with respect to its circuit diagram acts as a buck-boost converter except it doesn’t use from DC-DC converter bridge. Γ-source inverters are one of the conventional converters based on impedance-sources; which have been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017